
VisNow – a Modular, Extensible Visual Analysis 
Platform 

 
 

Krzysztof S. Nowinski 

University of Warsaw, ICM 
Prosta 69  

00-838 Warsaw, Poland 

know@icm.edu.pl 

 

 

Bartosz Borucki 

University of Warsaw, ICM 
Prosta 69  

00-838 Warsaw, Poland 

babor@icm.edu.pl 

 

 

ABSTRACT 
A new, dataflow driven, modular visual data analysis platform with extensive  data processing and visualization 

capabilities is presented. VisNow is written in Java, easily extendable to incorporate new modules and module 

libraries. Dataflow networks built with the help of interactive network editor can be wrapped into stand-alone 

application for the end users. 

Keywords 
Scientific visualization, modular systems, dataflow driven system, medical imaging 

1. INTRODUCTION 
The VisNow system is based on longtime experience 

of usage and development of AVS systems 

(Advanced Visual Systems Inc., AVS 3-5 and AVS 

Express), IBM Data Explorer and several other 

general visualization systems [Peik07] [Hans04] 

[Para10][HPV13]. VisNow implements the concept 

of dataflow driven, modular system. The user builds 

a network of modules reading, processing and 

mapping data. Generic data structures are passed 

from output ports to input ports and the data 

processing is controlled by the user-manipulated 

parameters. 

2. MODULAR STRUCTURE  
All functionality of VisNow, including data 

input/output, logical and numerical processing (a.k.a. 

filtering), mapping of numerical data into geometric 

object and rendering these objects, are implemented 

as modules. Each module is capable of processing of 

data according to current parameter setting and 

outputting the results. In the case of input modules 

processing data means usually reading them from 

local disk or from some remote source. VisNow 

modules process two types of data: a Field 

encapsulating a discrete representation of data 

defined over an 1-, 2- or 3-dimensional area and a 

GeometryObject encapsulating a Java3D geometry. 

It should be noted that the distinction between 

filtering and mapping modules is somewhat blurred: 

filtering modules output simultaneously graphical 

rendering of the results to be shown in the viewer 

window and mappers usually output the results as 

data object. For example, the module interpolating 

data to a regular mesh outputs the graphic rendering 

of the resulting field and the isosurface module 

outputs both a geometry object and an irregular mesh 

with interpolated data.  Thus, the GUI of a module 

consists usually from Computation UI controlling 

module parameters, e.g. axis and location of a slice 

or input file name, and Presentation UI controlling 

color mapping of data and details of the presentation 

of points, lines, surfaces and volumes. 

2.1. VisNow Granularity 
The majority of existing systems based on the 

dataflow paradigm implement a fine-grained concept 

of relatively small building blocks. This model 

requires building of complicated networks to perform 

even simple tasks. In particular SciRun, IBM DX and 

other systems, require to instantiate “technical” 

modules like a colormap manager, 3D scene etc. to 

make the first geometrical object visible.  

 

Permission to make digital or hard copies of all or part 

of this work for personal or classroom use is granted 

without fee provided that copies are not made or 

distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first 

page. To copy otherwise, or republish, to post on 

servers or to redistribute to lists, requires prior specific 

permission and/or a fee. 



Figure 1. An example of VisNow visualization 

In contrast, the VisNow system uses simple networks 

of high level modules: it is enough to use a reader, a 

slice module, an isolines module and the build-in 

viewer to obtain a reasonable visualization of a 3D 

data set – an application of read-in and see principle.  

 

Figure 2. VisNow network producing Fig.1 

VisNow provides fairly precise estimation of default 

parameter values. In particular, the mapping modules 

that could create extremely large geometries 

automatically downsize the input to reasonable 

dimensions leaving the final control over the 

geometry size to the user. As an example, glyph 

visualization of a vector vield over an 512x512x512 

mesh will be automatically downsampled to 

64x64x64 mesh.   

To simplify the interaction of the user with the 

network and module controls network area, module 

controls and the viewer display are synchronized. 

The user can pick a geometry object in the 3D 

window highlighting in the network area the module 

that created this object and bringing up the module 

controls. 

3. VISNOW DATA STRUCTURES 
VisNow uses internally a single, universal, abstract 

Field data type describing a discretization of an area 

in the Euclidean 1-, 2- or 3-space together with a set 

of numeric and non-numeric data defined over this 

area. The Field data type has two implementations – 

a Regular Field type and an Irregular Field type. 

Basically, a field consists of three basic components 

– the obligatory structure, the (explicitly provided or 

implicitly defined) geometry and a (possibly empty) 

set of values.  

3.1. Regular Field 
The Regular Field type covers all data sets with a 

regular structure, that is, a one- two- or three-

dimensional table structure that is characterized by a 

simple list of dimensions – e.g. a 100,000,000-long 

time series, an 1920x1080 HD image or a 

512x512x300 CT scan. In the simplest case, the 

geometry is defined implicitly with the node pijk 

located at the point (i,j,k). In the general case of a 

regular curvilinear field all coordinates of all points 

can be provided explicitly, and in an intermediate 

setting the user can set affine coordinates consisting 

of the origin point p and one, two or three cell 

vectors v0, v1, v2. 

3.2. Irregular Field 
The Irregular Field type requires explicit definitions 

of both structure and geometry. The structure is 

determined by the number of nodes and a list of Cell 

Sets. Each cell set is a collection of cells (point cells, 

segments, triangles, quadrangles, tetrahedral, 

pyramids, prisms and hexahedra). This data type 

covers basically all data sets occurring in FEM 

structural and CFD computations, but can be (and is) 

used for visualization of molecular structures, 

abstract graph presentation etc. Currently, VisNow 

does not support arbitrary polygons/polyhedral 

requiring off-line triangulation of such sets.  

3.3.VisNow Data Values 
VisNow uses a generic Data Array type to hold a 

variety of simple numeric (unsigned byte, short, int, 

float and double), complex, logical, string and 

generic Java object data. A data array holds the 

proper (flat) array of values of corresponding type 

and some additional data, e.g. name, physical unit, 

minimal and maximal values etc. Each data item can 

be a scalar, a vector or a (possibly symmetric) matrix. 

Thus, vector or tensor data can be processed natively 

with VisNow. 

3.4. Time Dependent Data 
The data values and node coordinates can be static or 

dynamic (defined for a list of time moments). It is 

sometimes important to have different data defined 

for different lists of time moments (e.g. numeric 

forecast outputs provide atmospheric pressure and 

ground level temperature for each five-minute time 

step while precipitation data are integrated over one 

hour intervals and orography or land cover are 

definitely static.  

 

Figure 3. Numeric weather forecast data in the (x,y,t) 

coordinates: orography shown at the base, a pressure 

isosurface shows emergence of low pressure area, 



wind and rain shown as glyphs 

VisNow allows different lists of time moments for 

each variable (data array or node coordinates) 

providing a reasonable, piecewise linear interpolation 

for a given time moment. The data can be 

dynamically modified with time steps added or 

removed, and VisNow takes care for consistent 

interpolation. In the case of 2D fields, the time 

dependent data can be converted to a stack of slices 

of a 3D field – see Figure 3. 

The only limitation of the VisNow time dependent 

data capabilities is the requirement of constant data 

structure (topology). 

4. STANDARD VISNOW MODULES 

4.1. Input/Output 
VisNow supports a basic set of data formats with all 

types of images, simplified raw volume, AVS field 

and own VisNow regular field metafile format. The 

last file format is designed as a universal metafile 

allowing to read in ASCII or binary files containing 

static or time dependent coordinates and values of a 

regular field. In addition, a reader capable of 

browsing DICOM data is available for medical 

imaging data input, and an interactive trial-and-error 

method of ingestion of volumetric data of unknown 

dimensions is provided. 

 

 

Figure 4. CT data read in from a DICOM file and 

deformed to match a patient image. 

 

Unfortunately, the irregular data are so complicated 

that there is no way of developing a metafile that 

could describe all particular file formats. Thus, 

VisNow offers a set of modules capable of reading in 

AVS UCD, Ansys Fluent, EnSight and VTK data, 

usually with some limitations.  Every partial result of 

VisNow data processing can be stored in the VisNow 

(ir)regular field format. 

VisNow can access data either by a local disk path or 

from remote URL. In addition, VisNow supports 

browsing of UNICORE grid resources either with the 

use of a grid virtual filesystem browser or with a grid 

bean for inserting a GridFTP data transfer as part of 

an UNICORE workflow.  

The content of the viewer window can be written in 

any of the Java supported image formats in arbitrary 

resolution (not limited to the screen resolution). In 

addition, an animation can be stored and converted to 

the MPEG-4 movie format. 

4.2. Data Modification (Filtering) 
VisNow provides standard operations (downsizing 

and cropping regular data, interpolation to user 

defined meshes, simple arithmetic on data etc.). 

Advanced numerical processing modules  include 

differential operations on regular fields with arbitrary 

geometry, FastFourier transform, convolution with 

user defined and editable kernel etc. Data 

calculations can be performed by simple 

mathematical formulas.    

Advanced image denoising, segmentation and 

skeletonization algorithms have been implemented as 

elaborated data filtering modules. These modules are 

mainly used in medical applications. 

4.3. Mapping of Data to Geometries 
Each type of VisNow data (IrregularField, 1D-, 2D- 

and 3D-RegularField) has a default visualization 

mode. VisNow provides elaborated methods of 

mapping component values to colors including  

easily modifiable continuous or quantized colormap. 

In the case of more than one data component it is 

possible to map one component to hue and modifu 

the brightness or saturation by another component, 

e.g. mapping electrostatic potential to hue and field 

intensity to brightness. Blending of grayscale mapped 

anatomical data with physiological data mapped with 

a rainbow datamap is also a standard VisNow 

feature. In addition, the object  transparency can be 

controlled by yet another selected data component.  

The standard mappers library includes slicing,  

volume rendering and isosurfacing of 3D data, 

graphing and isolines creation in the case of 2D data 

and simple graphing of 1D data. Glyphs and text 

glyphs can be used for the representation of data at 

selected nodes. Streamlines, animated streamlines 

and object flow animations are available in the case 

of vector data components.  

VisNow provides extensive capabilities of annotating 

the generated images.  Colormap legends and 

coordinate axes are available with much attention 

paid to the clean and flexible labelling. The user can 

label field values by text glyphs, 3D annotations can 



be located in arbitrary points of the 3D scene and 2D 

annotations (titles) can be displayed .  

4.4. Viewers 
 VisNow provides a specialized 2D viewer and a 

simple graph viewer in addition to the main 3D 

viewer. A configurable 3D field viewer providing 

volume rendering and/or a set of orthogonal slice 

views helps to visualize 3D medical imaging data 

and an orthogonal viewer generates engineering type 

presentations. 

The 3D viewer is the basic visual interaction node 

with the standard picking, geometric modification 

and (to the limited extent) object drawing. 

5. IMPLEMENTATION AND 

EXTENDABILITY 
VisNow is implemented in Java with Java3D as its 

graphic interface to GL and is structured as a set of 

NetBeans projects.  

Each VisNow module is encapsulated in a Java 

package holding its main clas, an XML description 

file, and (usually) classes holding module parameters 

and a GUI panel. In addition a set of XML library 

descriptions allow to choose between basic, standard 

and enhanced module libraries.  

5.1. Extending VisNow 
New module libraries (plugins) can be created as 

separate NetBeans projects importing standard 

VisNow JAR files and following the package 

structure described above. New libraries can be  

dynamically added and modified at the runtime. Fast 

Java compilation opens an interesting possibility of 

usage of VisNow as a sort of an integrated 

development environment. The user can encapsulate 

newly implemented algorithm into the VisNow 

module and use sophisticated GUI for program 

parameters and visual debugging. As an example, the 

development of non-rigid 3D registration of CT data 

(see fig. 4) has been done entirely within the VisNow 

system with many algorithmic and implementational 

problems found and resolved under constant visual 

control. 

Any module network created in VisNow can be 

easily converted to a Java main class and released as 

a stand-alone application without the network GUI. 

Such form of the  application suits well the needs of 

an end user. 

 

5.2. Java Specific Problems 
Java, together with NetBeans provides excellent 

environment for the development of large, 

complicated projects. Nevertheless, some basic 

limitations should be taken into account or overcome. 

The object paradigm of the language with significant 

memory overhead and the Java3D data access forced 

to use flattened data arrays. For example,  

coordinates of a field of N nodes are processed as a 

single array of the length 3*N. On the other hand, the 

current hardware developments and increasing data 

size displayed a very serious Java language 

limitation. Array indices  and collection sizes are 32-

bit integers as. In effect, all Java data structures are 

limited to the size of at most 231 items. 

We are currently in progress of overcoming this 

limitation by the use of a library of  non-standard 

array-like data structures developed in ICM. The 

JLargeArrays library allows to declare and use arrays 

indexed by long integers and thus the computational 

capabilities are limited only by physical memory 

size. The basic data structures and several basic data 

reading, filtering and visualization modules are 

already converted to JLargeArrays and we expect the 

next release of VisNow at least partly capable of 

large data processing. 

6. VisNow AVAILABILITY 
VisNow is available under GPL Classpath Exception 

public license with the binary installers for Linux, 

Windows and Mac OS, accessible from 

http://visnow.icm.edu.pl. The sources of VisNow and 

JLargeArrays are available at the GitHub repository. 

7.  REFERENCES 
[Peik07] Peikert R. Visualization systems. SciVis 

2007, 

http://graphics.ethz.ch/teaching/former/scivis_07/

Notes/Handouts/11-visSystems.pdf 

[Hans04] The Visualization Handbook, ed. by C.D. 

Hansen, C.R.Johnson, Elsevier 2004 

[Para10] ParaView guide, Kitware, Inc. Version 4 

(August 2012)  

[HPV13] High Performance Visualization, ed. by E. 

Wes Bethel et al., CRC Press 2013

 

http://visnow.icm.edu.pl/

